REFERENCES

1. Roy A, Saxena V, Pandey LM. 3D printing for cardiovascular tissue engineering: a review. Mater Technol 2018;33:433-42.

2. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014;114:1852-66.

3. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340:115-26.

4. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, et al; SYNTAX Investigators. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 2009;360:961-72.

5. Wen Y, Li XY, Li ZY, Wang ML, Chen PP, et al. Intra-myocardial delivery of a novel thermosensitive hydrogel inhibits post-infarct heart failure after degradation in rat. J Cardiovasc Transl Res 2020; doi: 10.1007/s12265-019-09941-x.

6. Chen Y, Li C, Li C, Chen J, Li Y, et al. Tailorable hydrogel improves retention and cardioprotection of intramyocardial transplanted mesenchymal stem cells for the treatment of acute myocardial infarction in mice. J Am Heart Assoc 2020;9:e013784.

7. Cattelan G, Guerrero Gerbolés A, Foresti R, Pramstaller PP, Rossini A, et al. Alginate formulations: current developments in the race for hydrogel-based cardiac regeneration. Front Bioeng Biotechnol 2020;8:414.

8. Saxena V, Hasan A, Sharma S, Pandey LM. Edible oil nanoemulsion: an organic nanoantibiotic as a potential biomolecule delivery vehicle. Int J Polymeric Mater Polymeric Biomaterials 2017;67:410-9.

9. Hasan A, Waibhaw G, Tiwari S, Dharmalingam K, Shukla I, et al. Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res A 2017;105:2391-404.

10. Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 2018;111:923-34.

11. Hasan A, Saxena V, Pandey LM. Surface functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption and fibroblast adhesion. Langmuir 2018;34:3494-506.

12. Deka S, Saxena V, Hasan A, Chandra P, Pandey LM. Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater Sci Eng C Mater Biol Appl 2018;92:932-41.

13. Fopase R, Saxena V, Seal P, Borah J, Pandey LM. Yttrium iron garnet for hyperthermia applications: Synthesis, characterization and in-vitro analysis. Mater Sci Eng C 2020;116:111163.

14. Saxena V, Chandra P, Pandey LM. Design and characterization of novel Al-doped ZnO nanoassembly as an effective nanoantibiotic. Appl Nanosci 2018;8:1925-41.

15. Saxena V, Pandey LM. Bimetallic assembly of Fe(III) doped ZnO as an effective nanoantibiotic and its ROS independent antibacterial mechanism. J Trace Elem Med Biol 2020;57:126416.

16. Hasan A, Saxena V, Castelletto V, Zimbitas G, Seitsonen J, et al. Chain-end modifications and sequence arrangements of antimicrobial peptoids for mediating activity and nano-assembly. Front Chem 2020;8:416.

17. Saxena V, Pandey LM. Synthesis, characterization and antibacterial activity of aluminum doped zinc oxide. Mater Today Proc 2019;18:1388-400.

18. Si R, Gao C, Guo R, Lin C, Li J, et al. Human mesenchymal stem cells encapsulated-coacervated photoluminescent nanodots layered bioactive chitosan/collagen hydrogel matrices to indorse cardiac healing after acute myocardial infarction. J Photochem Photobiol B 2020;206:111789.

19. Uman S, Wang LL, Thorn SL, Liu Z, Duncan JS, et al. Imaging of injectable hydrogels delivered into myocardium with SPECT/CT. Adv Healthc Mater 2020;9:e2000294.

20. Navaee F, Renaud P, Braschler T. Highly efficient cardiac differentiation and maintenance by thrombin-coagulated fibrin hydrogels enriched with decellularized porcine heart extracellular matrix. bioRxiv 2020; doi: 10.1101/2020.01.30.927319.

21. Cheng J, Zhang P, Liu T, Zhang J. Preparation and properties of hydrogels based on PEG and isosorbide building blocks with phosphate linkages. Polymer 2015;78:212-8.

22. You F, Wu X, Kelly M, Chen X. Bioprinting and in vitro characterization of alginate dialdehyde-gelatin hydrogel bio-ink. Bio-des Manuf 2020;3:48-59.

23. Traverse JH, Henry TD, Dib N, Patel AN, Pepine C, et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. J Am Coll Cardiol Basic Trans Sci 2019;4:659-69.

24. Curley CJ, Dolan EB, Otten M, Hinderer S, Duffy GP, et al. An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure. Drug Deliv Transl Res 2019;9:1-13.

25. Li T, Huang F, Diaz-Dussan D, Zhao J, Srinivas S, et al. Preparation and characterization of thermoresponsive PEG-based injectable hydrogels and their application for 3D cell culture. Biomacromolecules 2020;21:1254-63.

26. Obiweluozor FO, Tiwaria AP, Lee JH, Batgerel T, Kim JY, et al. Thromboresistant semi-IPN hydrogel coating: towards improvement of the hemocompatibility/biocompatibility of metallic stent implants. Mater Sci Eng C Mater Biol Appl 2019;99:1274-88.

27. Longchamp A, Kaur K, Macabrey D, Dubuis C, Corpataux J, et al. Hydrogen sulfide-releasing peptide hydrogel limits the development of intimal hyperplasia in human vein segments. Acta Biomater 2019;97:374-84.

28. Wang LL, Liu Y, Chung JJ, Wang T, Gaffey AC, et al. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat Biomed Eng 2017;1:983-92.

29. Feng J, Wu Y, Chen W, Li J, Wang X, et al. Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J Mater Chem B 2020;8:308-15.

30. Plotkin M, Vaibavi SR, Rufaihah AJ, Nithya V, Wang J, et al. The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials 2014;35:1429-38.

31. Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, et al. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cell Mater 2011;22:43-55. discussion 55

32. Islam S, Bhuiyan MAR, Islam MN. Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 2017;25:854-66.

33. Andrade F, Goycoolea F, Chiappetta DA, das Neves J, Sosnik A, et al. Chitosan-grafted copolymers and chitosan-ligand conjugates as matrices for pulmonary drug delivery. Int J Carbohydr Chem 2011;2011:865704.

34. Peng X, Yu Y, Wang Z, Zhang X, Wang J, et al. Potentiation effect of HB-EGF on facilitating wound healing via 2-N,6-O-sulfated chitosan nanoparticles modified PLGA scaffold. RSC Adv 2017;7:43161-71.

35. Qiu T, Jiang W, Yan P, Jiao L, Wang X. Development of 3D-printed sulfated chitosan modified bioresorbable stents for coronary artery disease. Front Bioeng Biotechnol 2020;8:462.

36. Lin M, Lou C, Lin J, Lin TA, Chou S, et al. Using spray-coating method to form PVA coronary artery stents: structure and property evaluations. J Polym Res 2018;25.

37. Khashi M, Hassanajili S, Golestaneh SI. Electrospun poly-lactic acid/chitosan nanofibers loaded with paclitaxel for coating of a prototype polymeric stent. Fibers Polym 2018;19:1444-53.

38. Hecht H, Srebnik S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules 2016;17:2160-7.

39.  Ravi, Pandey LM. Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue. Appl Clay Sci 2019;169:102-11.

40. Draget KI, Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 2011;25:251-6.

41. Sack KL, Aliotta E, Choy JS, Ennis DB, Davies NH, et al. Intra-myocardial alginate hydrogel injection acts as a left ventricular mid-wall constraint in swine. Acta Biomater 2020;111:170-80.

42. Qi Z, Liu X, Bai Y, Ge J. Alginate oligosaccharide inhibits platelet activation with minimal impact on bleeding time. Cardiol Plus 2020;5:42.

43. Lee CC, Su YC, Ko TP, Lin LL, Yang CY, et al. Structural basis of polyethylene glycol recognition by antibody. J Biomed Sci 2020;27:12.

44. Oesterhelt F, Rief M, Gaub HE. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New J Phys 1999;1:6.

45. Boyacioglu S, Kodal M, Ozkoc G. A comprehensive study on shape memory behavior of PEG plasticized PLA/TPU bio-blends. Eur Polym J 2020;122:109372.

46. Lin M, Lin J, Huang C, Chen Y. Textile fabricated biodegradable composite stents with core-shell structure. Polym Test 2020;81:106166.

47. Ge W, Zheng G, Ji X, He F, Hu J, et al. Effects of polyethylene glycol-20k on coronary perfusion pressure and postresuscitation myocardial and cerebral function in a rat model of cardiac arrest. J Am Heart Assoc 2020;9:e014232.

48. Aykar SS, Reynolds DE, Mcnamara MC, Hashemi NN. Manufacturing of poly(ethylene glycol diacrylate)-based hollow microvessels using microfluidics. RSC Adv 2020;10:4095-102.

49. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, et al. Transient regenerative potential of the neonatal mouse heart. Science 2011;331:1078-80.

50. Li H, Bao M, Nie Y. Extracellular matrix-based biomaterials for cardiac regeneration and repair. Heart Fail Rev 2020; doi: 10.1007/s10741-020-09953-9.

51. Liao X, Yang X, Deng H, Hao Y, Mao L, et al. Injectable hydrogel-based nanocomposites for cardiovascular diseases. Front Bioeng Biotechnol 2020;8:251.

52. Du JB, Zhang W, Li N, Jiang H, Liu Y, et al. Association study of matrix metalloproteinase 3 5A/6A polymorphism with in-stent restenosis after percutaneous coronary interventions in a Han Chinese population. J Int Med Res 2020;48:300060519827145.

53. Owolabi US, Amraotkar AR, Coulter AR, Singam NSV, Aladili BN, et al. Change in matrix metalloproteinase 2, 3, and 9 levels at the time of and after acute atherothrombotic myocardial infarction. J Thromb Thrombolysis 2020;49:235-44.

54. Mewhort HE, Turnbull JD, Meijndert HC, Ngu JM, Fedak PW. Epicardial infarct repair with basic fibroblast growth factor-enhanced CorMatrix-ECM biomaterial attenuates postischemic cardiac remodeling. J Thorac Cardiovasc Surg 2014;147:1650-9.

55. Liu T, Wang X, Tang X, Gong T, Ye W, et al. Surface modification with ECM-inspired SDF-1α/laminin-loaded nanocoating for vascular wound healing. ACS Appl Mater Interfaces 2017;9:30373-86.

56. Hasan A, Pandey LM. Review: polymers, surface-modified polymers, and self assembled monolayers as surface-modifying agents for biomaterials. Polymer-Plastics Technol Eng 2015;54:1358-78.

57. Igarashi E. Factors affecting toxicity and efficacy of polymeric nanomedicines. Toxicol Appl Pharmacol 2008;229:121-34.

58. Zhang S, Cao J, Ma N, You M, Wang X, et al. Fast and facile fabrication of antifouling and hemocompatible PVDF membrane tethered with amino-acid modified PEG film. Appl Surf Sci 2018;428:41-53.

59. Alam P, Haile B, Arif M, Pandey R, Rokvic M, et al. Inhibition of senescence-associated genes Rb1 and Meis2 in adult cardiomyocytes results in cell cycle reentry and cardiac repair post–myocardial infarction. J Am Heart Assoc 2019;8:e012089.

60. Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RPH, et al. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater 2018;69:95-106.

61. Plautz WE, Sekhar Pilli VS, Cooley BC, Chattopadhyay R, Westmark PR, et al. Anticoagulant protein S targets the factor IXa heparin-binding exosite to prevent thrombosis. Arterioscler Thromb Vasc Biol 2018;38:816-28.

62. Bosman WM, Borger van der Burg BL, Schuttevaer HM, Thoma S, Hedeman Joosten PP. Infections of intravascular bare metal stents: a case report and review of literature. Eur J Vasc Endovasc Surg 2014;47:87-99.

63. Hasan A, Lee K, Tewari K, Pandey LM, Messersmith PB, et al. Surface design for immobilization of an antimicrobial peptide mimic for efficient anti-biofouling. Chemistry 2020;26:5789-93.

64. Saxena V, Merrilees MG, Lau KHA. Antifouling peptoid biointerfaces. In: Chandra P, Pandey LM, editors. Biointerface engineering: prospects in medical diagnostics and drug delivery. Springer; 2020. pp. 55-73.

65. Fopase R, Bhardwaj A, Yadav VS, Pandey LM. Engineered drug delivery systems: insights of biointerface. In: Chandra P, Pandey LM, editors. Biointerface engineering: prospects in medical diagnostics and drug delivery. Springer; 2020. pp. 1-30.

66. Pandey LM, Le Denmat S, Delabouglise D, Bruckert F, Pattanayek SK, et al. Surface chemistry at the nanometer scale influences insulin aggregation. Colloids Surf B Biointerfaces 2012;100:69-76.

67. Hasan A, Pandey LM. Kinetic studies of attachment and re-orientation of octyltriethoxysilane for formation of self-assembled monolayer on a silica substrate. Mater Sci Eng C Mater Biol Appl 2016;68:423-9.

68. Hasan A, Waibhaw G, Pandey LM. Conformational and organizational insights into serum proteins during competitive adsorption on self-assembled monolayers. Langmuir 2018;34:8178-94.

Mini-invasive Surgery
ISSN 2574-1225 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/